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The transferred hyperfine interactions of octahedral transition metal complexes are discussed. The 
necessity of using a model which accounts for spin polarization is stressed. Results obtained by mole- 
cular orbital calculations using the multiple scattering method are presented for thirteen different 
octahedral clusters. The agreement with experiments is satisfactory except for the contact term where 
it is only moderately good. Even in the latter case, however, the calculations yield some valuable 
information, particularly concerning the core polarization contribution. 

Key words: Transferred hyperfine interactions - Transition metal complexes Multiple scattering 
method 

1. Introduction 

The interaction between hyperfine structure measurements and quantum 
mechanical calculations of the electronic structure is of great value. The experi- 
ments provide a direct test of the accuracy of the calculated wave functions and at 
the same time the calculations may suggest improved models for the interpretation 
of the experimental results. As an example the anisotropic transferred hyperfine 
structure of a transition metal  complex gives information on the difference 
f ~ -  f~, where f~ and f~ are the fractions of unpaired spin on the ligand in a and n 
orbitals respectively [1]. In for instance CrF~-  the unpaired orbitals are n-orbitals 
and in the conventional model without core-polarization f~=O. Calculations 
based on the unrestricted Har t ree-Fock (UHF) method show, however, that there 
is a large negative contribution to f~ due to exchange polarization of the bonding 
a-orbitals. These results can be verified by combining ESR or N M R  data with 
neutron scattering data. Unfortunately there is still disagreement as to the precise 
value of f~ and f~ as we will see in section 4. 

The interpretation of isotropic hyperfine interactions, i.e. the Fermi contact 
term presents a very difficult problem which hardly can be solved without detailed 
calculations. In the complex mentioned above the contact term on the ligand 
would be zero in a non-polarized model since the unpaired orbitals have a node 
at the ligand nucleus. The experimental value is different from zero which again 
suggests that we have to use a model which accounts for spin-polarization, 
either directly or by configuration interaction. In section 4 results will be presented 
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from calculations using the multiple scattering method [2, 3]. This is a molecular 
orbital approach where the orbitals are obtained by direct integration without 
recourse to basis sets. Approximations have to be made in the effective hamiltonian 
for the orbitals. Although the results for this reason should be taken cure 9rano 
salis they will give important information on the magnitude of the different 
contributions, for instance the much disputed contribution from the inner shells. 
The latter is quite independent of the approximations in the method. 

2. Method of Calculation 

In applications of the multiple scattering (MS) method one first simplifies the 
one-particle equations by using a local exchange approximation [4]: 

V ex(r)= - 6e[(3/4rc~0 (r)]1/3, (1) 

0(r) = Y L 1  (2) 

In the unrestricted or spin-polarized approach one uses one potential, lA~), for 
spin-up orbitals and one, V~(x +), for spin-down orbitals. 0t to be used in Eq. (1) 
in place of 1/20 to define V~ ) is then obtained from Eq. (2) by summing only over 
orbitals associated with up-spin 

= (3)  

0, is similarly obtained by summing only over orbitals with spin-down. The value 
2/3 has been suggested for e [5], but here we will use a slightly larger value e =0.72 
since values in the range 0.71~0.73 have given the best agreement with Hartree- 
Fock orbitals [6]. We will not here discuss the accuracy of the local exchange 
approximation, but refer to a paper by Wilson et al. [7]. A more severe approxima- 
tion is in any case the muffin-tin approximation to the potential and charge density. 
In spherical regions around each atomic site spherical averages of these functions 
are taken. This is also done in the outer region, whereas a constant average is 
used in the interstitial region. The radii of the spheres were for CrF~- determined 
[8] by letting the central ion and ligand spheres tangent each other close to the 
charge density minimum along the bonding axis. Subsequently the same RF 
was used for all complexes with fluorine ligands and the same Rcr for all chromium 
complexes. The radii are given in Table 1. The method of integration, matching 
across sphere boundaries, etc. are described in other works [3, 17]. The outer 
sphere was also used as a "Watson sphere" with a uniformly distributed charge 
large enough to neutralize the whole cluster. 

The orbitals will have muffin-tin structure. Denoting the atomic regions I, II, 
etc., the interstitial region O, and the outer region ~2 an orbital ~o may be written 

= (r) + . . .  +  oo(r) + (4) 

where the functions qh, qhi, etc., q~o, and q~a are zero outside their own region. 
In the atomic region I ~ve have 

~oI(r)= Zl,m CntmRnlm(r) Ylm( O, cp) (5) 
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and similarly in other atomic regions and in O (expressed in local coordinates 
r, 0, ~o). In O the expansion is in terms of known analytical functions. R,~,, are 
determined by numerical integration in each atomic sphere. The criterion for an 
eigensolution is that the functions and their derivatives should match at the sphere 
boundary and this determines the eigenvalue and the remaining constants. The 
expansion Eq. (5) should be taken far enough to ensure a converged result. In 
practice only short expansions are necessary for convergence in the expectation 
values of interest in this paper. 

A quite surprising result of the calculations is that the atomic parts of the 
orbitals are so close to their counterparts for free atoms and ions. As an example 
we may take the t2o orbital in octahedral FeF~-, which has only a d component 
in the Fe region. This d component resembles the 3d function for free Fe 3§ to such 
an extent that the radius, rma~, of the maximum of the radial distribution function 
(r. R2(r)) is only about 1% larger than rma x for free Fe 3+. This maximum as well 
as the maxima of the ligand valence orbitals are well inside the respective atomic 
spheres. It therefore becomes meaningful to use the concept "occupancy of atomic 
orbitals" for metal 3d and ligand valence orbitals (but hardly for metal 4s and 
4p orbitals). The occupancy may be defined as 

(6) 

M refers to the metal region. In the ligand region we may similarly define qL from 
~0iv From these quantities we may then easily obtain f~ and f~ (in the octahedral 
case): 

3 (i) 
f~ =gEZ/qL(tzg$)-- Z; qL(t~2J~ ~,)] " 

(7) 

qL refers to charges equally distributed on all six equivalent ligand sites. The 
factors 2 and 3 respectively then enter because of the degeneracy and the factor 
1/2 for f~ since there are two n-orbitals at each site. 

3. Charge Distributions 

The mechanism for charge and spin transfer in complexes with one-atom 
ligands is as follows [ 1]. The bonding a- and n-orbitals (which in crystal field theory 
are ligand orbitals) usually have a large ligand component qL and a rather small 
metal 3d component, qM, on the central ion. The antibonding orbitals (which in 
crystal field theory are 3d orbitals) will have the opposite charge distribution with 
qL on the central ion and qM on the ligands. If a bonding orbital is occupied but 
not its antibonding counterpart, a charge qM is transferred from the ligand to the 
central ion. If a bonding and an antibonding orbital are both occupied there is no 
total charge transfer relative to the ionic case. This result which automatically 
follows in limited basis set calculations with only one relevant basis function on 
each center, shows up as a result also in the MSX~ calculations, interestingly 
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charges within central ion sphere compared to free ion charges 
within a sphere of the same size 

CrF63- CrC163- CrO69- MnF62- MnF64- MnC164- FeF63- FeO69- NiF~-  NiF 4- NiC164- 

M - L  dis- 3.65 a 4.50 b 3.58 c 3.29 a 3.96 e 4.97 f 3.61* 3.58 c 3.21 h 3.79 i 4.64 
tance (a. u.) 

Sphere 1.80 1.80 1.80 1.44 2.11 2.11 1.76 1.80 1.36 1.94 1.94 
radius (a. u.) 
alo (4s) 0.06 0.03 0.08 0.03 0.10 0.09 0.07 0.12 0.03 0.12 0.11 
t l .  (4p) 0.10 0.06 0.16 0.09 0.12 0.07 0.09 0.16 0.06 0.12 0.09 
e o (3&r) 0.76 1.07 0.85 1.15 2.07 2.11 2.36 2.59 1.62 2.32 2.57 
t2o (3d~) 2.76 2.73 2.79 2.75 2.85 2.87 3.00 3.20 5.31 5.63 5.61 

Sum 3.68 3.89 3.88 4.02 5.14 5.14 5.52 6.07 7.01 8.19 8.37 
Corresp. free 2.72 2.72 2.72 4.66 4.66 6.38 7.42 7.42 
ion value 

a K2NaCrF6 ' Ref. [9]. 
b CeCI3, Ref. [10] 
~ AI...O distance in LaA1Oa, see Ref. [11]. The calculations were originally done to to study the 

spin-density on A1 a+ in the impurity systems Cr:LaA103 and Fe:LaAIO3. 
d K2MnF6, Ref. [12]. 
~ KMnF3, Ref. [13]. 
f Cd...CI distance in KaCdC16, see Ref. [14]. 
g K2NaFeF6, Ref. [13]. 
h Rb2NiF6, Ref. [15]. 
i KNiF3, Ref. [16]. 

enough. Thus ligand-to-metal charge redistribution can only take place in those 
bonding orbitals whose antibonding counterparts are unoccupied. Similar 
conclusions have been reached by others [1, 18]. For the moment we are disregard- 
ing smaller effects like 4s and 4p "occupancies", small charge build-ups in the 
bonding region of the bonding orbitals etc. Since there are more electrons in 
bonding than antibonding orbitals the net charge transfer is directed from ligand 
to metal. The calculated result is given in Table 1. The net charge transfer is 
larger for a larger formal ionic charge (= oxidation) state). It also depends on 
other factors. M n  2 + complexes have a small charge transfer, which is related to 
the smaller ligand field stabilization energy and comparatively large interatomic 
distance. Concerning the ligands we find a larger charge transfer for a less electro- 
negative ligand as expected. 

From the charge distributions given in Table 1 it is possible to derive approxi- 
mate values for electric quadrupole coupling constants. For CrC163- the charges 
of the bonding e o orbitals is 1.07 units within the Cr sphere. Since a free ion 3d 
orbital is only 90% within the metal sphere we may obtain a more accurate 
"occupancy" by increasing all integrated charges (Eq. (6)) by 11%. The Fig. 1.07 
above should thus be increased to 1.18 units. This means that the 3p~ charge is 
depleted by 1.18/6 = 0.197 units. The corresponding depletion for the n-orbitals 
is only 0.005 units. The calculated excess hole density in the 3pc orbital is thus 19 % 
of an electron. The experimental value derived from the quadrupole coupling 
constant is 23 % [-19, 20]. The agreement is as good as can be expected, particularly 
since we have not included any Sternheimer factors. 
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4. Anisotropic Hyperf'me Interactions 

With regard to spin transfer we may, of course, also apply the rule that only 
bonding orbitals whose antibonding counterparts are unoccupied can redistribute 
electrons. In the d s case the spin is thus transferred through the bonding spin- 
down o- and n-orbitals. In the d 8 case only the bonding spin-down a-orbitals are 
available and thus f~ = 0. In the d 3 case the bonding al", aS, and n~ orbitals may 
transfer electron spins, and since the aT transfer is larger than the a~ transfer we 
obtain a non-zero f~. 

For transferred anisotropic interactions we define [1] 

A.=  gN,eflN(, "- 3) (s) 

where (r-3) is evaluated for the valence shell p-orbital on the ligand. The coupling 
constants A~ and A. may then be written 

f .Ap 
A , -  2s ' (9) 

A : -  f~Av (10) 
2s 

Here we have assumed that the molecular orbitals can be expressed to a good 
approximation in terms of a single free atom orbital (2p for F, 3p for C1, etc.) and 
that the inner shells do not contribute. The former assumption is to a large extent 
confirmed in our calculations. The latter is justified since in the atomic case the 
inner shells contribute less than 5 % of the valence shell contribution. 

The results of the calculations are given in Table 2. The agreement with experi- 
ments is fairly satisfactory. Our f .  are always numerically smaller than the fr 
values. For the clusters CrO 9- and FeO69 - Freund et al. have obtained experi- 
mental values for f .  by combining resonance data for Cr 3 + and Fe a§ as im- 
purities in MgO [26] with neutron diffraction results [27] on the antiferromagnetic 
salt. A similar method has been used for MnF2 [1]. The value of f ,  for CrO 9- 
estimated in this way is remarkably large particularly compared to f ,  for FeO 9 -. 
It seems more reasonable that f .  should be uniformly small for all complexes, 
as obtained in the present calculations. 

In the MSXe results are compared to the theoretical results of Brown and 
Burton [22] and Clack et al. [23] we find in general good agreement. One exception 
is NiF64- where the latter two .methods yield a much smaller value. NiF~- has 
been a testing ground for ab initio methods. Moskowitz et al. [32] obtained 
f~=6.3%, Soules et aI. [33] fr and Wachters and Nieuwpoort [34] 
fr 2.9 %. Table 1 in the latter paper contains further results obtained by ab initio 
methods. Another case where the MSXc~ result disagrees with other results is 
CrF63- where Clack et al. [23] obtained f ,  ~ 0 whereas Brown and Burton [22] 
obtained larger f ,  and f .  than by MSXa. In d 3 complexes the f~ value is due to 
spin-polarization in bonding a-orbitals, whereas in the other complexes exa- 
mined here the f~ value arises because of bonding in a+ orbitals. The failure of the 
CNDO method to predict an f~ significantly different from zero may then be 
traced to the neglect of one-center exchange in the CNDO method. 
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In order to study the influence of the next nearest neighbours calculations 
were also carried out on the larger clusters CrO6AI~ + and FeO6A19+ with a 
Watson sphere charge equal to -9e .  Experimental results have been obtained 
for the spin density coefficients on AP + in Cr:LaA103 and Fe:LaA103 [11]. For 
Cr 3 + the f~ of O was increased to - 3.9 % and f~ increased to 1.4 % and for Fe 3 + f~ 
decreased to 5.8 % and f~. increased to 3.8 %. The calculated "supertransferred" 
hyperfine structure parameters on the AP + ion were much too large, a fact which 
may have to do with the negatively charged Watson sphere. This question will 
be examined further in the future. The calculations show, however, that f~ and j~ 
are sensitive to the next neighbours, and that the latter should be included in the 
calculations. It is not possible to represent them by just an electrostatic field, as 
has been done in several works. 

f~ is considerably larger for a heavier halogen ion. This is in agreement with 
experiments, for instance a larger f ~ - f ~  for MnCI~- than for MnF64- [14]. 
Larger charge transfer in the bonding orbitals is considered equivalent to a 
stronger covalent bond. The antibonding orbital is at the same time more anti- 
bonding with higher orbital energy. Larger covalency in a-orbitals than n- 
orbitals is thus consistent with the fact that the antibonding a*-orbitals have larger 
orbital energies than the antibonding n*-orbitals. The calculated orbital energy 
difference e(a*)-e(n*) for the higher halides, however, is smaller than for the 
fluorides [21] although the a-bonding, but not the n-bonding, is stronger. This 
is quite remarkable and confirms the well-known fact that the spectrochemical 
series does not correlate well with bonding strength. 

5. Isotropic Hyperfine Interactions 

The isotropic part of the hyperfine interaction may be written [1] 

1 16n R 
AT fS ~ gNfifiN[~r ,)--~r (11) 

r162 and 0~ are defined by Eq. (3), and evaluated at the appropriate nuclei R a. The 
contact term at the central ion nucleus 4n[Q~(0)-r162 is difficult to obtain 
theoretically since the positive contribution from the valence orbitals and the 
negative contribution from the central ion core due to spin-polarization almost 
cancel [35]. In this paper we will only be concerned with the ligand contact term 
4n[p~(RL)--0r j which gives the isotropic contribution to the transferred 
hyperfine interactions. The calculated results are given in Table 3, where we have 
also translated the spin-density at the nucleus into fractions of the charge density 
at the nucleus for the highest s-orbital, i.e. 2s for F and O and 2s for C1. These 
fractions can be directly compared to those evaluated in experiments. 

In Table 3 the different contributions arise from the following sources: 
(1) s-admixture into valence orbitals, 
(2) polarization of highest s-orbitals of ligand, 
(3) polarization of inner s-orbitals of ligand (40). 

Regarding the polarization of the inner s-orbitals, it was only calculated in a few 
cases. In those cases it was found to be nearly proportional to the inner shell part 
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of the contact term for the free atom ~c0") 

{0= f~+2f~ {~ ) (12) 
n 

where n is the number of unpaired spins for the free atom. In other cases {~o a) was 
obtained in atomic calculations with the same X~ exchange as in the cluster 
calculations and subsequently 3o from Eq. (12). The contributions to the spin 
density at the nucleus from each shell is within 20% of the spin-polarized Hartree- 
Fock (SPHF) results [35, 36] (non-local exchange). 

The inner shell contributions are sometimes in the literature obtained by 
orthogonalization of the inner shells to the valence shell. I examined this procedure 
in an atomic SPHF calculation for the fluorine atom. The ls orbitals were frozen 
but spin-polarization of the 2s orbitals allowed. Subsequently the ls~ and lsfi 
orbitals were orthogonalized to 2s~ and 2sfi respectively. The resulting contact 
term using this procedure was 5.7 a.u. compared to the normal UHF value 
1.7 a. u. (the calculations were carried far enough to be basis independent), which 
shows that orthogonalizing the ls orbitals to the valence shell orbitals is not a 
permissible method. 

A part of the contributions (1) and (2) above is an "atomic" contribution like (3). 
Another part is due to bonding effects. We may get an understanding of the nature 
of the latter part by studying a simple configuration interaction (CI) wave function 
for the high spin d s clusters of a type that was originally suggested by Hubbard 
et al. [37] 

= Co l3dz2c~2pz~2p~fl2s~2sfl[ + C l[3ds~2pz~3dz~fl2s~2sfl[ (13) 

The orbitals are here ordinary non-orthogonal, atomic orbitals. The wave function 
accounts for the transfer of fl-spin from ligand to central ion in the bonding 

orbitals just like our one-determinantal MO wave function. This transfer is 
rather small as we have found which means that C2o is close to one and C~ quite 
small. A similar wave function was used by Taylor et al. to calculate the contact 
term o n  A13 + in Cr:LaA103 and Fe:LaA103 [11]. Here we will only be interested 
in how the contact term on the ligand arises. To that end we calculate the best 
overlap (BO) orbitals of 7 j, i.e. those satisfying 

~qbBodl . . .d~r  = max, (14) 

where ~BO is the Slater determinant of the BO orbitals. By calculating these 
orbitals, which can be done by an iteration procedure [38]. we obtain directly 
a relationship between the CI function and the independent-particle model. 
The unnormalized best overlap orbitals are in the first iteration 

3d~(BO) = 3d~ + 2s~(3dl2s) - 2pc~(3dl2p) 

2p~(BO) = 2p~ + [2s~(3d[2s)(3d[2p) - 3d~(3dl2p)]a 1 

2pfi(BO) = 2pfl + ~o 3dfl + ~oo 2sfl( 3dl2s) (15) 

2s~(BO) = 2sc~- [ 3dc~ ( 3dl2s ) + 2p~ ( 3dl2s ) ( 3d[2p ) ]a 2 

2sfl(BO)--- 2sfl 
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where 

a 1 = 1 - (2s13d) 2 ~ 1 

a 2 = C O + C 1 (2p[3d)(1 - (2p[3d) 2) ~ 1. 
(16) 

The 2pc~ and 3de admixtures into the 2pe(BO) and 3de(BO) arise for orthogonality 
reasons. As we see there will be s-admixtures in all the orbitals 3dc~(BO), 2pe(BO), 
2p/~(BO). The largest admixture will be in 3dc~(BO) where the admixture coefficient 
is (3d12s). In addition we find that some of the charge of 2sc~(BO) is in 3de and 2pc~. 
To sum up we will thus find a positive contribution to the spin density from the 
valence orbitals which are composed of metal 3dc~ and 3d/~ and ligand 2pc and 
2p/~ orbitals and a negative contribution from the 2s orbitals. As we may see in 
Eqs. (15) these contributions tend to cancel each other. We will not here discuss 
the accuracy of this CI-LCAO approach, nor will we use it for evaluation of any 
numbers. It was found, however, that the calculated contributions by the multiple 
scattering independent particle model followed quite well the scheme implied 
by Eqs. (15). 

We may assume that the "atomic" and "bonding" contributions to (2) are 
additive. The "atomic" contribution may be obtained in the same way as the one 
from (3) by using Eq. (12). With Xc~ exchange (c~=0.72) the contribution (2) is 
about the same as (3) fo r O and F but with the reversed sign. In SPHF (2) is about 
- 1 1 5 %  of (3). The total contact term in the SPHF method for free O and F is 
thus - 15 % of the contribution from the ls shell. The experimental value is about 
1/2 of the SPHF value for the whole series from B to F [39-41]. The correlation 
corrections thus also seem to be proportional to the total accumulated spin density 
in the 2p orbitals. If we want to correct an experimental value for core-polarization, 
i.e. (2) plus (3) above we may thus use a rule like Eq. (12) where ~(o a) now is the 
experimental value of the contact term for the free atom. This was done by Davies 
et al. [42]. 

The agreement with experiments is fairly good except for the d 3 systems. Some 
trends are reproduced, however, for instance a larger value for MnF 2 - than for 
CrF 3- and a smaller value for CrO 9- than for CrF 3-. When the larger .cluster was 
tried for Cr:LaA103 and Fe:LaA103 a reduction to about one half of the value for 
CrO69 - was obtained. Since contact terms seem to be little dependent on next 
nearest neighbours [ 11 this may be an error reduction rather than a physical effect. 

Unlike the case for the anisotropic hyperfine interactions it seems hard to 
directly interpret experimental contact terms in terms of a simple physical model. 
Our results do not, unfortunately, give any clue to the solution of this problem. 
In order to make efficient use of experimental contact terms for, for instance, 
structure determinations it is therefore necessary to carry out detailed calculations, 
preferably with a more reliable method than the one used here. 

Acknowledgement. This work started at University of Florida. I am grateful for the excellent 
hospitality extended to me by members of Chemistry and Physics departments. In particular I am 
indebted to Dr. J. W. D. Connolly for using his version of the multiple scattering program (MUSCATEL), 
and Dr. E. K. Viinikka for carrying out some of the calculations in connection with an earlier work. 



Transferred Hyperfine Structure Interactions in Transition Metal Complexes 183 

References 

1. Owen, J., Thornley, J.H.M.: Rep. Prog. Phys. 29, 675 (1966) 
2. Slater, J.C.: J. Chem. Phys. 35, 228 (1965) 
3. Johnson, K.H.:J. Chem. Phys. 45, 228 (1966) 
4. Slater, J.C.: Phys. Rev. 82, 538 (1951) 
5. Gaspar, R.: Acta Phys. Hung. 3, 263 (1954) 
6. Lindgren, I., Schwarz, K.-H. : Phys. Rev. A 5, 542 (1972) 
7. Wilson, T., Wood, T.H., Slater,J.C.: Phys. Rev. A 2, 620 (1970) 
8. Larsson, S., Connolly, J. W. D. : Chem. Phys. Letters 20, 323 (1973) 
9. Schulman, R.G., Knox, K.: Phys. Rev. Letters 4, 603 (1960); Knox, K., Mitchell, D.W.: J. Inorg. 

Nucl. Chem. 21, 253 (1961) 
10. Wooster, N.: Z. Krist. 74, 363 (1930) 
11. Taylor, D.R., Owen, J., Wanklyn, BarbaraM.: J. Phys. C (Solid St. Phys.) 6, 2592 (1973) 
12. Bode, H., Wendt, W.: Z. Anorg. Allgem. Chem. 269, 165 (1952) 
13. Badel, D.: Struct. Bonding 3, 1 (1968) 
14. Tsay, F. D., Helmholz, L. : J. Chem. Phys. 50, 2642 (1969) 
15. Bode, H., Voss, E.: Z. Anorg. Allgem. Chem. 286, 136 (1956) 
16. Okazaki, A., Suemene, Y.: J. Phys. Soc. Japan 16, 671 (1961) 
17. Johnson, K.H.: Advan. Quantum Chem. 6, 143 (1973) 
18. Watson, R.E., Freeman, A.J.: Phys. Rev. 134, A 1526 (1964) 
19. Morosin, B., Narath, A.: J. Chem. Phys. 40, 1958 (1964) 
20. Bersohn, R., Shulman, R.G.: J. Chem. Phys. 45, 2298 (1966) 
21. Larsson, S., Connolly,J.W.D.: J. Chem. Phys. 60, 1514 (1974) 
22. Brown, R. D., Burton, P. G.: Theoret. Chim. Acta (Berl.) 18, 309 (1970) 
23. Clack, D.W., Hush, N.S., Yandle, J.R.: J. Chem. Phys. 57, 3503 (1972) 
24. Ogawa, S.: J. Phys. Soc. Jap. 15, 1475 (1960) 
25. HaI1,T. P. P., Hayes, W, Stevenson, R.W.H., Wilkens, J.: J. Chem. Phys. 38, 1977 (1963) 
26. Freund, P., Owen, J., Hann, B.F.: J. Phys. C: Solid State Phys. 6, L 139 (1973) 
27. Fender, B.E.F., Jacobsen, A.J., Wedgwood, F.A.: J. Chem. Phys. 48, 990 (1968); Tofield, B.C., 

Fender, B.E.F.: J. Phys. Chem. Solids 31, 2741 (1970~ 
28. Helmholz, L.: J. Chem. Phys. 31, 172 (1959); Helmholz, L., Guzzo,A.V.: J. Chem. Phys. 32, 302 

(1960); Helmholz, L., Guzzo, A.V., S anders,R. N. :J. Chem. Phys. 35, 1349 (1961) 
29. Nathans, R., Alperin, H.A., Pickart, S.J., Brown, P.J.: J. Appl. Phys. 34, 1182 (1963) 
30. Schulman, K.G., Sugano, S.: Phys. Rev. 130, 506 (1963) 
31. Rinneberg, R., Haas, H., Hartmann, H. : J. Chem. Phys. 50, 3064 (1969) 
32. Moskowitz, J.W., Hollister, C., Hornbaek, C.J., Basch, H.: J. Chem. Phys. 53, 2570 (1970) 
33. Soules,T. F., Richardson,J.W., Vaught, D. M. : Phys. Rev. B 3, 2186 (1971) 
34. Wachters, A.J.H., Nieuwpoort, W.C.: Phys. Rev. B 5, 4291 (1972) 
35. Freeman, A.J., Watson, R.E.: Phys. Rev. Letters 5, 498 (1960); Phys. Rev. 123, 2027 (1961) 
36. Bagus, P. S., Liu, B., Schaefer III, H. F.: Phys. Rev. A 2, 555 (1970) 
37. Hubbard, J,  Rimmer, D.E., Hopgood, F.R.A.: Proc. Phys. Soc. 88, 13 (1966) 
38. Larsson, S., SmithJr.,V.H.: Phys. Rev. 178, 137 (1969) 
39. Harvey, J. S. M. : Proc. Roy. Soc. (London) A 285, 581 (1965) 
40. Larsson, S., Brown,R.E., SmithJr.,V.H.: Phys. Rev. A6, 1375 (1972) 
41. Harvey, J.S.M., Evans, L., Lew, H.: Can. J. Phys. 50, 1719 (1972) 
42. Davies, J.J., Smith, S.R.P., Owen, J., Hann, B.F.: J. Phys. C: Solid State Phys. 5, 245 (1972) 

Dr. S. Larsson 
Department of Quantum Chemistry 
University of Uppsala 
Box 518 
S-75120 Uppsala, Sweden 


